Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 41(9): 1208-1222, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32238887

RESUMO

Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg-1 · d-1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1ß, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKß, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 µmol · L-1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.


Assuntos
Acroleína/análogos & derivados , Intestinos/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Fator de Transcrição RelA/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Acroleína/uso terapêutico , Animais , Linhagem Celular , Inflamação/prevenção & controle , Intestinos/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Isquemia Mesentérica/complicações , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/epidemiologia
2.
Acta Pharmacol Sin ; 38(1): 69-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27773935

RESUMO

Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from the traditional Chinese medicine rhizoma alismatis, which exhibits a number of pharmacological activities, including anti-hepatitis virus, anti-cancer and antibacterial effects. In this study we examined whether AB23A protected against non-alcoholic steatohepatitis (NASH) in mice, and the mechanisms underlying the protective effects. NASH was induced in mice fed a methionine and choline-deficient (MCD) diet for 4 weeks. The mice were simultaneously treated with AB23A (15, 30, and 60 mg·kg-1·d-1, ig) for 4 weeks. On the last day, blood samples and livers were collected. Serum liver functional enzymes, inflammatoru markers were assessed. The livers were histologically examined using H&E, Oil Red O, Masson's trichrome and Sirius Red staining. Mouse primary hepatocytes were used for in vitro experiments. The mechanisms underlying AB23A protection were analyzed using siRNA, qRT-PCR, and Western blot assays. AB23A treatment significantly and dose-dependently decreased the elevated levels of serum ALT and AST in MCD diet-fed mice. Furthermore, AB23A treatment significantly reduced hepatic triglyceride accumulation, inflammatory cell infiltration and hepatic fibrosis in the mice. AB23A-induced decreases in serum and hepatic lipids were related to decreased hepatic lipogenesis through decreasing hepatic levels of SREBP-1c, FAS, ACC1 and SCD1 and increased lipid metabolism via inducing PPARα, CPT1α, ACADS and LPL. The reduction in inflammatory cell infiltration corresponded to deceased serum levels of mKC and MCP-1 and decreased hepatic gene expression of MCP-1 and VCAM-1. The reduction in hepatic fibrosis was correlated with decreased hepatic gene expression of fibrosis markers. The protective effects of AB23A were FXR-dependent, because treatment with the FXR agonist CDCA mimicked AB23A-induced hepato-protection in the mice, whereas co-administration of FXR antagonist guggulsterone abrogated AB23A-induced hepato-protection. In mouse primary hepatocytes, FXR gene silencing abrogated AB23A-induced changes in gene expression of Apo C-II, CPT1α, ACADS and LPL. AB23A produces protective effects against NASH in mice via FXR activation.


Assuntos
Colestenonas/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Ácido Quenodesoxicólico/farmacologia , Colestenonas/antagonistas & inibidores , Deficiência de Colina , Relação Dose-Resposta a Droga , Fibrose/patologia , Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/deficiência , Camundongos , Pregnenodionas/farmacologia , Cultura Primária de Células , Substâncias Protetoras/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores
3.
Toxicol Appl Pharmacol ; 283(3): 178-86, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25655198

RESUMO

Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes.


Assuntos
1-Naftilisotiocianato , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colestase Intra-Hepática/prevenção & controle , Colestenonas/farmacologia , Fígado/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Substâncias Protetoras/farmacologia , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Colestase Intra-Hepática/patologia , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Homeostase , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
4.
Biol Pharm Bull ; 33(8): 1438-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20686245

RESUMO

The effects of Sho-seiryu-to (TJ-19), an ethical Kampo formulation, on bleomycin (BLM)-induced pulmonary fibrosis in rats was examined. Pulmonary fibrosis was induced by intratracheal instillation of a single dose of BLM (5 mg/kg). The TJ-19 used consisted of at least 21 constituents, as determined by three-dimensional HPLC analysis, and was administered orally twice a day at a dose of 1.5 g/kg until the end of the study period. Changes in general appearance and body weight were monitored. Twenty-eight days after BLM instillation, the animals were sacrificed and the study parameters were measured. TJ-19 attenuated the loss in body weight, increase in lung/body weight ratio and concentration of hydroxyproline and malondialdehyde in the lung tissues induced by BLM administration. TJ-19 also prevented BLM-induced fibrotic changes in the lung histology. These protective effects of TJ-19 were observed when administration was started 1 week before and simultaneously with the instillation of BLM. These results suggest that TJ-19 has prophylactic potential against BLM-induced pulmonary fibrosis, and may therefore be a promising drug candidate and medicinal resource for preventing BLM-induced and idiopathic pulmonary fibrosis.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/efeitos dos fármacos , Medicina Kampo , Animais , Bleomicina , Cromatografia Líquida de Alta Pressão , Colágeno/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...